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Abstract  

The pioneering work of Runge and Kutta a hundred years ago has ultimately led to suites of sophisticated 
numerical methods suitable for solving complex systems of deterministic ordinary differential equations. How- 
ever, in many modelling situations, the appropriate representation is a stochastic differential equation and here 
numerical methods are much less sophisticated. In this paper a very general Class of stochastic Runge-Kutta 
methods is presented and much more efficient classes of explicit methods than previous extant methods are 
constructed. In particular, a method of strong order 2 with a deterministic component based on the classical 
Runge-Kutta method is constructed and some numerical results are presented to demonstrate the efficacy of this 
approach. 

1. I n t r o d u c t i o n  

Until recently many models that have been developed to describe physical phenomena have ignored 
stochastic effects because of the difficulty in solution both in terms of the lack of suitable numerical 
methods and also the non-availability of sufficiently powerful computers. However, recently there 
has been much interest in developing numerical methods for the numerical solution of stochastic 
differential equations (SDEs) and this has meant that more realistic models are capable of being 
solved. For example, it is natural to use SDEs in models of investment finance, while SDEs have long 
been used to model turbulent diffusion. It is also natural to consider stochastic counterparts of, for 
example, chemical kinetic models as typified by the Brusselator equations. In order to solve an SDE 
numerically a large number of sample paths have to be computed so that various statistical measures 
can be applied appropriately. Hence the availability of supercomputer resources will have a significant 
impact on the practical implementation of numerical SDE schemes. 
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This paper is partly a tribute to the pioneering work of Runge and Kutta, by extending their 
approaches to the numerical solution of SDEs. It was Runge [19] who extended the simple Euler 
method for solving the deterministic ordinary differential equation (DODE) 

y'(t)  = f (y( t ) ) ,  y(to)=Yo, y e ~ m  (1) 

by allowing for a multiplicity of function evaluations within a single numerical step. This approach 
was extended by Kutta [12] who characterized the set of Runge-Kutta methods of order 4 which led 
to the famous classical Runge-Kutta method 

Y l  -~- Y n  ~ 

Y2=Yn + ½hf(Y,), 

Y3 ~- Yn -[- lhf(Y2),  (2) 

Y4 = Yn + h f ( ~ ) ,  

Yn+l = Yn + ~h(f(Yl)  + 2f(Y2) + 2/(Y3) + / (Y4) ) .  

This basic idea has led to a plethora of methods (both explicit and implicit) based on a general 
class of Runge-Kutta methods but it was not until Butcher [3] developed a very general methodology 
(which followed on from the work of Gill [7], Hu[a [8] and Merson [14]) which allowed the analysis of 
the order of a general class of s-stage methods that efficient methods were capable of being developed. 

In the case of numerical methods for SODEs (Stochastic Ordinary Differential Equations), the work 
is much less advanced than is the case for DODEs. (A survey paper by Burrage and Platen [1] 
discusses some of the current differences between numerical methods for DODEs and SODEs and 
outlines possible future directions in which work in the stochastic arena should proceed in order to 
generate robust and efficient software.) The autonomous stochastic version of (1) can be written in 
differential form as 

dy = f(y)  dt + g(y) dW, y(to) = Yo, Y • ]Rm. (3) 

Here f is an m-vector-valued function, g is an m x p matrix-valued function and W(t)  is a 
p-dimensional process having independent scalar Wiener process components (t ~> 0), and the solution 
y(t) is an m-vector process. This is called an It6 stochastic ordinary differential equation and consists 
of a varying continuous component called the drift and a rapidly varying continuous component called 
the diffusion. The integral formulation of (3) can be written as 

t t 

+ f + / 
to to 

(4) 

where the second integral in (4) is an It6 stochastic integral with respect to the Wiener process W(t). 
In order to simplify some notational details, for the rest of this paper it will be assumed without loss 
of generality that m = p = 1. 

It is now known (see [10], for example) that it is not possible to merely translate a deterministic 
numerical method such as (2) to a SODE. Instead a very detailed analysis of order, stability and error 
behaviour is needed in order to construct suitably appropriate methods. Perhaps the simplest such 
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method is the stochastic generalization of the explicit Euler method [13] which takes the form (when 
m = l )  

Yn+~ = Vn + h,,f(yn) + AWng(yn), (5) 

where 

hn = ~,~+l - tn, AWn = W(tn+l)  - W(tn). 

Here the AW~ are independent N(0, hn) normally distributed random variables which can be generated 
from independent, uniformly distributed random variables on [0, 1]. 

This method is a very inaccurate one (order has a number of different meanings in the case of 
SODEs) and so more efficient methods are needed. One possible approach is to use truncated forms of 
the stochastic Taylor series formula (see [9,17,20], for example). By adding more and more stochastic 
integral terms from the stochastic Taylor expansion more accurate methods are obtained. But this is 
at the cost of requiring more and more partial derivatives of f and g. Consequently, a great deal of 
attention has been recently paid to developing derivative-free schemes. One approach is to replace 
the derivatives in the stochastic Taylor approximations [16] by differences, and this leads to the 
derivative-free version of the Milstein method (m = 1) 

Yn+l = Yn + hnf(Yn) q" hnAWng(yn) + T \ V ~ n /  - 1 (g(Yl) - 9(Yn)). (6) 

Riimelin [18] has shown that methods such as (6) converge strongly with strong order at most 1 
(see Section 2 for definitions of order), in comparison with a strong order of 0.5 for method (5). More 
general Runge-Kutta type schemes can be constructed but it is possible to show that a strong order 
of 1.5 cannot be surpassed if just the increments AWn of the Wiener process are used. Thus as far 
as the authors are aware there has not appeared in the literature any general stochastic Runge-Kutta 
type methods (implicit or explicit) of strong order 2.0 or more. (Note that Chang [5] has constructed 
an explicit order 2.0 strong scheme in which the stochastic term is constant.) 

The purpose of this paper is to show how this order bound can be overcome, by presenting a very 
general class of stochastic Runge-Kutta methods. In particular a family of methods of strong order 
2.0 will be constructed in which the deterministic component of the method is the classical Runge- 
Kutta method given in (2). This general methodology will, in principle, allow the construction of even 
higher order methods in a systematic fashion. For this present paper the focus will only be on explicit 
methods--implicit methods will be considered in later works. 

Thus the outline of the paper is as follows: in Section 2 a discussion on strong order and weak 
order along with the stochastic Taylor series formula will be given. In Section 3 the class of Runge- 
Kutta methods based on the Wiener increment will be introduced and general order conditions will 
be analysed to show that such methods cannot have a strong order greater than 1.5. In particular, a 
new explicit method of order 1.5 with minimal local error truncation coefficients will be constructed. 
In Section 4 new classes of Runge-Kutta methods will be constructed based on additional multiple 
stochastic integral terms from the stochastic Taylor series, and, in particular, an explicit 4-stage method 
of strong order 2.0 will be constructed. In Section 5 a number of numerical results will be presented 
which shows the efficacy of this new approach compared with extant methods of strong order 1.5, and 
the paper will finish with some conclusions and outlines for future work. 
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2. Stochastic differential equations 

In the integral formulation of an SODE given in (4), W(t) is a Wiener process and can be interpreted 
in such a way that the derivative of W is the Gaussian white noise process (so that W(t) is in fact not 
differentiable). The process W is indeed a Gaussian process with independent increments and satisfies 

E(W(t ) )  = 0, E(W(t )  2) = t, Vt ~> 0. (7) 

Since the sample paths of a Wiener process are not of bounded variation, the second integral in (4) 
cannot be interpreted in the Riemann-Stieltjes sense (see [6], for example). In fact, if different choices 
of "ri are made from the subintervals [ti-1, ti] the natural approximating sums 

N 

Eg(v ( r i ) ) (W( t i  ) - W(ti-1)) (8) 
i=1 

converge in the mean square sense to different values of this integral. (Note that a sequence of 
random variables {Xn} is said to have mean square convergence to a random variable X if (E(IXn - 
XI2)) 1/2 ---+ 0 as n ~ c~.) In particular, if Ti ---- t i - l  this gives the It6 integral, and this leads to a 
calculus based on It6's chain rule. 

A nice feature of the It5 integral is that it can be defined for a general class of non-anticipating 
random functions in such a way as to preserve various Wiener process properties as well as allowing 
easy calculation of moments of the solution of an SODE. In particular, the It6 integral forms a 
martingale which is a natural extension of the fact that W(t) is a martingale, and, in addition, the It6 
integral satisfies 

b 

.[a/././,/ 0 
b 2 b 

a a 

There are of course an infinite number of possibilities for the Ti in (8) of the form 

Ti =Oti + (1 -- O)ti-1 

for which (8) gives 

b 

Sw(t) dW(t)= ~(W'(b)-W2(a))+ (0-~)(b-a). (10) 

Only for the non-anticipating It6 case (0 = 0) does the martingale property (and (9)) hold, although 
another very important case (0 = 1/2) leads to the Stratonovich calculus and the Stratonovich integral 
then satisfies the usual rules of calculus. The choice of which interpretation (It6 or Stratonovich) should 
be used depends on the type of analysis required for an SODE and in this paper the Stratonovich form 
will be used. In order to avoid any confusion in notation, henceforth the symbol o will be used to 
denote the Stratonovich form (i.e., o dW(t)).  
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It is important therefore to understand the relationship between the It6 and Stratonovich represen- 
tations of a stochastic differential equation. Thus if the nonautonomous version of an SODE is given 
by 

dy = f ( t , y ) d t  + g ( t , y )dW (11) 

then the related Stratonovich SODE is given by 

dy = f( t ,  y) dt + 9(t, y) odW, (12) 

where 

f ( t ,  y) = f ( t ,  y) - (t, y)g( t ,  y). (13) 

In other words the two equations (11) and (13), under different rules of calculus, have the same 
solution. 

Finally, in this brief introduction to the theory of SODEs, the It6 form of the chain rule is given 
(see [10], for example). Thus for a given function F and with certain smoothness, measurability 
and boundedness properties on f and g in (11) to guarantee the existence, pathwise uniqueness and 
bounded second moments then 

~_~ OFT 
OF dt l t race (ggTO~2~d t+-~ygdW.  (14) dF(t ,y)  = Ot + fT dt + ~ \ oy / 

Some numerical time-discretization methods for the numerical solution of SODEs have already 
been discussed in Section 1. In order to evaluate the efficacy of such methods two ways of measuring 
accuracy are used: strong convergence and weak convergence. 

For problems involving direct simulation it is important that the trajectories of the numerical ap- 
proximation be close to the exact solution. Thus let YN be the numerical approximation to y( ty)  after 
N steps with constant step size h = ( i N  - -  to)/N; then ff is said to converge strongly to y with order p 
if 3C > 0 (independent of h) and 5 > 0 such that 

F~(I~N - y(tN)I) < Ch p, h • (0,5). (15) 

Note that in the deterministic case this reduces to the standard order condition. Here p can be fractional 
since the root mean square order of the Wiener process is h 1/2. Indeed the Euler-Maruyama scheme 
has strong order of convergence 0.5. 

However, in some cases it is not necessary to find an accurate pathwise approximation of an It6 
process. Instead, only some of the moments may be of interest or, more generally, E(g(~)) for some 
function g. This is a much weaker condition. Thus the discrete time approximation is said to converge 
weakly with order p to y if for each polynomial g (which is 2(p + 1) times continuously differentiable), 
3C > 0 (independent of h) and 5 > 0 such that 

IE(g(gN)) -- E(g(y(tN)) )I <~ Ch p, h e  (0,5). (16) 

Milstein [15] showed that the Euler-Mamyama scheme has weak order 1.0. In this present paper the 
focus will be on the strong order of explicit Runge-Kutta methods. 

In the case of Runge-Kutta methods for deterministic problems, the order of accuracy is found by 
comparing the computed solution with the exact solution over one step assuming exact initial values. 
This necessitates the use of the Taylor series expansion, and a similar situation holds for SODEs in 



86 K. Burrage, P.M. Burrage / Applied Numerical Mathematics 22 (1996) 81-101 

which a numerical method is compared with the stochastic Taylor series expansion using either the It6 
or Stratonovich calculus. Furthermore, because of the simplified nature of the Stratonovich calculus 
only the Stratonovich form of the stochastic Taylor series will be used here. 

Thus consider the autonomous, one-dimensional Stratonovich SODE 

dy(t) = f(y(t)) dt + g(y(t)) odW(t) (17) 

which can be written in integral form as 

t t 

: / f (,(.)).. y(t) o d W ( 8 ) .  (18) 

to to 

It6's formula states that a given function a of the solution y can be written as 

t t 

= a(y(to)) + I L°a(y(s))ds + I Lla(y(s)) a(y(t)) odW(s) ,  (19) 

to to 

where in the It5 form 

LO = f O  1 0 2 
Oy + ~9 '2i~y2, Ll = g ~ ,  

while in the Stratonovich form 

L ° = f ~ y ,  L l --= g~yy. (20) 

Applying (18) and (20) with a ( y )  = y a n d  m = 1 and writing y(to) = Yo gives 

y(t) =Y0 + f(Yo)Jo + 9(Yo)dl + f'(Yo)(f(Yo))Joo + f'(Yo)(9(Yo))Jlo 
+ 9t(Yo)(f(Yo))Jol 9-9t(Yo)(g(Yo))Jll + f"(yo)(f(Yo),f(yo))Jooo 
+ f'(yo)(f'(Yo)(f(Yo)))Jooo + f"(Yo)(f(yo),g(yo))Jloo 

f'(Yo)(f'(Yo)(9(Yo)))J, oo + f"(Yo)(9(Yo), f(Yo))Jo,o + 
+ 
+ 
+ 
+ 
+ 
+ 

f'(yo)(g'(yo)(f(yo)))Jolo 
f '  (yo ) (g' (yo ) (g(yo ) ) ) J110 

9' (Yo) ( f '  (Yo ) ( f (Yo) ) ) Joo, 
9'(Yo)(f'(Yo)(9(Yo)) )J, ol 

+ f"(Yo)(g(Yo),g(Yo))JIlo 
+ g"(Yo)(f(Yo),f(Yo))Jool 
+ 9"(Yo)(f(Yo),9(Yo))Jlo, 
+ 9"(Yo)(9(Yo), f(Yo))Joll 

g'(yo)(g'(yo)(f(yo)) )Joll + g"(yo)(g(yo),g(yo))Jllt 
g'(vo)(g'(vo)(g(vo)))g,~, + n. (21) 

Here R is a remainder term and JJlJ2""Jk represents the Stratonovich multiple integral, where integration 
is with respect to ds if ji  = 0 or o dW(s)  if ji = 1. Thus, for example, in one dimension 

t s2 s 

,,ol--///od.(.,,,.. 
to to to 
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Remarks. 
(1) Eq. (21) is the generalization of the Taylor series expansion for deterministic equations with 

9 = 0 .  
(2) Just as there is a rooted tree expansion in terms of elementary differentials for the Taylor series 

expansion of the solution of (1) (see [4]), so there is a similar expansion for the Stratonovich 
Taylor series expansion of the solution of (18). 

(3) Kloeden and Platen [10] give these stochastic Taylor series expansions in terms of a hierarchical 
set concept but do not relate it to the rooted tree theory introduced by Butcher [3] for the 
deterministic case. For the purposes of unifying the theory for both deterministic and stochastic 
problems this unification is now given (see [2,11]). 

This unification is based on the consideration of the set of bi-coloured rooted trees, T, in which • 
(-r for a deterministic node) and o (~r for a stochastic node) play the crucial role. Thus if tl, . . . ,  tm are 
bi-coloured trees then [ t l , . . . ,  tin] and { t l , . . . ,  tin} are trees in which t~,..., tm are each joined by a 
single branch to • or o, respectively. In a similar manner to the deterministic case [4], an elementary 
differential can be associated with any t E T such that 

F(T)(y) = f(y), F(a)(y) = 9(Y), 

f(m)(y)[V(tl)(y),...,F(tm)(y)], t= [tl,...,tm], (22) 

F(t)(y)= 9(,~)(y)[F(tl)(y), .,F(tm)(y)], t={tl, . . . , t ,~}. 
In addition, an elementary weight can be associated with each elementary differential (see (21)) by 

associatiLg the integer 0 with a deterministic node (.)  and the integer 1 with a stochastic node (o). 
These elementary weights are in fact integrals. With y(t) the solution of (18) and for any integrable 
function F of y, define 

t 

Jo(F) = / F(y(s)) ds, 

to 

t 

= / F(y(s)) odW(s),  J | ( F )  

to 

then these elementary weights can be written as 

0('r)--- J0(1), 0(~r) -- J r ( l ) ,  

o ( t j  , t =  

o ( t )  = 

J1 O(tj , t = { t l , . . .  , t in}.  

(23) 

(24) 

As in [4], let c~(t) be the number of ways of labelling t with a set of p(t) (the number of nodes 
of t) ordered symbols such that along each outwardly directed arc the labels increase; then it can be 
shown that the Stratonovich Taylor series is given by 

y ( t )  = (25) 
tET 

Note here that isomorphic trees are regarded as identical. 
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While for lower order Runge-Kutta methods it is sufficient to obtain the order conditions by 
comparing directly the Runge-Kutta scheme with the stochastic Stratonovich Taylor expansion (see, 
for example, [10]), the development of the order conditions via tree theory allows the structure of 
more general Runge-Kutta methods to be described. 

3. Runge-Kutta methods for SODEs 

Certain classes of one-step multistage methods have been introduced for solving the general SODE 
problem (3) (see [6], for example). Perhaps the most general class of methods considered so far takes 
the form 

8 8 

r =yn+h a,sf(rj)+J  b, g(rj), i =  1 , . . . , s ,  

j=l j=l (26) 
S 8 

yn+, = vn + h  jy(rj) + J, 7 jg( r j ) .  
j = ,  j = l  

Here A = ( % )  and B = (bij) are s × s matrices of real elements while a v = (cq , . . .  , % )  and 
3 'v --- (71 , . . . ,  %) are row vectors E It~ s. If both A and B are strictly lower triangular then (26) 
is said to be explicit, otherwise it is implicit. The stochastic component comes from the J1 integral 
(J1 = ft~+~ cdW) associated with B and 7. Most authors [6,18] only consider explicit methods. 

Riamelin [18] has shown that if f and 9 and the necessary partial derivatives of f and 9 are bounded 
then (26) converges uniformly on [to, T] in the quadratic mean sense to the It6 solution of 

+ A~y9(Y) + 9(Y) dW, dy f (y)  

where 

A = 7TBe. 

Furthermore, if A = 1/2 then (26) converges to the solution of the corresponding Stratonovich equation. 
In particular RUmelin [18] has proven 

Theorem 1. If f and 9 are arbitrary functions and have continuous and bounded partial derivatives 
up to the sixth order then the strong order of (26) cannot exceed 1.5. 

Examples of a Runge-Kutta method of the form (26) with strong order 1.5 include the method of 
Platen which can be written with s = 2 as (0 0o) A = B =  , t i t  = (1,0), 7T = (1,½). (27) 

1 

Thus if higher strong order methods are required, (26) needs to be modified in some way so as 
to include other stochastic elements apart from just J1. This will be done by the introduction of an 
arbitrary matrix Z and vector z T whose elements are themselves random variables. Hence the general 
family of s-stage stochastic Runge-Kutta methods (SRKs) will be given by 
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8, 8 

Yi = yn + h E aij f(Yj)  + E Ziyg(Yj), 
j = l  j = l  

8 s 

j = ,  j = l  

Clearly (26) is now a specific case of (28). 

i =  1 , . . . , s ,  

(28) 

By studying the general strong order properties of (28) for arbitrary random variable elements within 
Z and z, we will show how the strong order barrier given in Theorem 1 can be broken by constructing 
a class of 4-stage explicit SRKs with strong order 2 which relies on both the random variables J1 
and J10. At the same time these order conditions will be used to construct a two-stage method of the 
form (26) which is optimal in terms of minimising the local truncation error coefficients. 

Of course (28) is a very general representation, and so a simplifying assumption will be placed 
on the Zij and zj in that it will be assumed that each of these random variables can be written as a 
linear combination of p different random variables 01 , . . . ,  Op, where the time dependence is implicitly 
assumed. Thus the Zij and zj will be written as 

P 

~, = E bl~ ~°,, ~, j = , , ,  ~, 
l = l  
p (29) 

z, = ~TJ')o,, j =  1,...,s, 
1=1 

and (28) can be written as 

E E (') Y~ = y~ + h aijf(Yj) + bij 9 Or, i = 1 , . . . ,  s, 
j=l l=l \ j = l  / (30) 

Yn+l = Yn ..~ h oljf(yj) + E l) g(yj) Ol. 
j=l l=l j=l 

This family of methods can be characterized by the tableau 

A t3 (1) . . .  B (p) 

ct 7 (1) . . .  7(p) (31) 

In order to study the order conditions associated with (30) the approach of Butcher [4] will be 
used in which by writing tn = to and for a given t = to + h, Yn+l will be calculated as Y(t)  with 
intermediate values Yl ( t ) , . . . ,  Ys(t) given by 

s p s 

Y i ( t ) = y ( t o ) + ( t - t o ) E a i j f ( Y j ( t ) )  + E O z E b } J ) g ( Y j ( t ) ) ,  i =  1 , . . . , s ,  
j = l  /=1 j = l  

s p s (32) 

Y(~): ~(~o)+ (~- ~o) ~ ~ (~(~)) + Z;  o, Z 7}')~(r,(~)) • 
i=1 l= l  i=1 
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Note that it will be assumed that 0t(t0) = 0, l = 1 , . . . , p .  
By substituting for Y/(t) in the expression for Y(t) in (32), the f(Yi(t)) can be expanded using the 

Taylor series expansion 
O(3 

f(Yi(t)) = f(Y(to)) + E ( t -  to)kLk f(Yi(to) ) (33) 
k=l  

where L is the differential operator given by 

P a 

L = -~ + E ~Oj' (34) 
j = l  

and where it is assumed that f (and 9) are sufficiently differentiable. 
Thus, for example, 

f(Y(to)) = f(y(to)) 

Lf(Y~(t))=f'(Y~(t)) aJ(Yj ( t ) )+( t - - to)~_ , f ' (Y j ( t ) )  ~t 
j = l  

p ,_5, (z), ~ ' ~  P 
+ b ,g + 

/----1 j = i  ] l= l  j = l  

so that / 
/ 

be written as 
hp, (t) 

Y(t) = ~ 4)(t)F(t)(y(to)) p(t)! " 
tET 

Here ~( t )  is defined recursively by 

k(¢) =~, 

p(t)c~ T l-I k(h), 
~ ( t )  = z=~ 

m 

p(t)zT I I  k(h), 
l= l  

where 
m 

k(t)=p(t)Al-Ik(h),  t=[t , , . . . , tm],  
/=1 

t = [ t l , . . . , t m ] ,  

t = { t ~ , . . . , t m } ,  

(35) 

(36) 

s p s 

Lf(~(~o)) ~ a~jf'(y(to))f(y(to)) + ~ O~ Z (~) ' = b~j f (y(t0))g(y(to)) .  
j = l  /=1 j = l  

Similarly L2f(Yi(t)) = L(if(Yi(t)), etc. (see [2] for more details). 
In fact if the Zij and zj satisfy a linear relationship between the p different random variables as 

described in (29) then it can be shown that the Taylor series expansion for the numerical method can 
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7n 

h(~)=p( t ) z l - Ih( t l ) ,  t = { t L , . . . , t m } ,  (37) 
l = l  

and where multiplication of vectors is considered componentwise. In addition p(t) is the number of 
nodes of t while Pl (t) is the number of • (deterministic) nodes of t. 

Hence the local truncation error at t = t,~ of an SRK method can be written as 

. hp~ (t) \ 
L., = Z ~(t)O(t)-q~(t) p~-( )F( t ) (y ( tn) ) .  (38) 

¢cT 

Thus if 

v/E(IL~,t) 2 ~< Ch ~ 

then a method will have strong order p. 
Writing Ln as 

L,~ = Z e(t)F(t)(y(tn)) (39) 
t~T 

and letting 

c = Ae, A = Ze (40) 

then Table I gives e(t) for all trees with p(t) <<. 3. 
We are now in a position to study general order conditions. The first point to note is that for every 

tree t in the deterministic case there a r e  2 p(t) trees that must be considered in the stochastic case. 

E(J ,0  - h , J , f )  2 = O(h4) ,  (41) 

where 

.(j = (~%. 

Now the lefthand side of (41) is given by 

E[J]0 ] - 2@hE[JloJ1] + ~bZh2 E[j2] .  (42) 

But Jl ~ N(0, h) and from [10] 

E[J~ k+l] = 0, E[jZk] = 2k! hk 
k!2 k , 

and so (42) is 

E[JloJ1] = ~ h ,  E[J20] : h 3 (43) 

Table 2 illustrates how quickly the number of trees grows. 
We will now study the order properties of the class of methods given by (26) in which 

Z =  JiB, z =  J17 T, b = B e .  

From Table 1 a necessary condition for strong order 2 is from condition 4 
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Table 1 
Local error coefficients 

# t e(t) 

1 * Jo - haTe 

2 o Jl - zTe 

3 [.] doo - h2aTc 

4 [o] J10 - haTA 

5 { ' }  Jm - hzWc 

6 {o} J l l  - zT)~ 

7 [., .] ~ ) _  7n. a l . 3  TC2 

8 [[.]] Jo~)-  h3aTAc 

9 [[o]] J , ,~ , -  hZaTAA 

10 [., o] Jl00 - lh2aTeA 

11 [% "] J o w -  lh2aTcA 

12 [{.}] Jo in -  h2 a T Z c  

13 [{o}] Juo - hav ZA 

14 [o,o] J l i 0 -  ~nal" T--2A 

15 {[.]} J, xn - h2zT Ac  

16 {[o1} J,,,, - hzT dA 

17 { . ,  Q} OrOOl -- ~D, Z C 1 " 2  T 2 

18 {., o} Jl01 -- ½hzTcA 

19 {o, ,,} Jou -- IhzTcA 

20 {o, o} Jul  - ~ z A 1  T.2 

21 {{.}} J0u -- hzTZc  

22 {{o}} J m  - z T z A  

Table 2 
Number of  trees 

p(t) 1 2 3 4 

deterministic 1 1 2 4 

stochastic 2 4 16 64 

In fact the minimum of the quadratic occurs when ¢ = 1/2 in which case the minimum value is 
1/12. This leads us to construct the complete class of explicit SRK methods of the form (26) with 
strong order 1.5 and minimum principal local truncation error. 

Now trees 1, 2 and 6 are of order h, ~ and h, respectively so that it is necessary for 

o~Te = 1, ")'Te = 1 (44) 
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and 

E ( J l l  - JZTTb)2 = 0. (45) 

Since 

Jl ..1 -- Jlp • - p ! ,  

(43) and (45) imply 

3 3-yTb + 3(-yTb) 2 = 0 
4 

or 

1 ( 4 6 )  ,yTb = ~. 

The terms corresponding to the h 1'5 terms arise from trees 4, 5, 20 and 22. These give, from (43), 

E(J ]0  - hJlaTb)2 = (1 _ a r b  + (aTb)2)h3  

E ( jg l  _ hJl,,/Tc)2 = (1 _,),T c + (,yTc)2)h3 ' (47) 

E ( J l l l  -- 1j3")'Tb2) 2 = (1 _ 2,,/Tb2 @ (,.yTb2)2) ~ h 3  ' 

E ( J l l l  - J31"/T Bb)2 = (1 _ 1,,/T Bb + (,.yT Bb)2)15h3. 
These four equations are minimized if 

1 ,yTb 2 1 7TBb 1 (48) o~Tb = ~' "/Tc = 2 '  = 5'  = g 

in which case the (respective) minima are 

h 3 h 3 
1--2' 1--2' 0, 0. (49) 

Note if s = 2, 7TBb = 0 and the principal error constants are 

h 3 h 3 5h 3 
1--2' 1--2' 0, 12 " (50) 

The s = 2 and s = 3 methods that lead to these optimal methods have tableaus, respectively, 

i 0 02j 1 0 
o o 

3 i-J, 

0 0 0 

C2 0 0 

c3 - 0  0 0 

~1 ~2 ~3 

0 

b2 J1 

(b3 - ~b)J1 

")/1 

0 

0 

72 

0 

0 

0 

'73 

(51) 
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where 

1 ¢ =  
652")'3' 

3 3 
")I2 - -  0 ~,ot2/L 2 - -  0 ) t 3 ' '  "/'3 - -  0 I, Ot3/t  3 - -  0 ) t2x '  "/1 = l - - 7 2  - -  7 3 ,  

0/1 : 1 - -  0/2 - -  0/3, 
1 b3 c 3 C 2 3 

0/2 - 0/3 g ,  b3 b2 - (c3 - c2 - (b3 - b 2 / ) .  

Note that the Platen method 

i! 0 0 0 
0 J1 0 

o 1 j ,  

has principal error constants 

(52) 

h 3 h 3 h 3 5 h3" (53) 
3 ' 3 ' 36' 12 

4. An explicit SRK with strong order 2 

In this section an explicit SRK method with strong order 2 will be constructed based on (31) with 
p = 2 and with 

O1 = J1, 02 = Jlo/h. 

Thus the method can be written as 

/ - 1  / - 1  ( }j . (2)  J 1 0 )  
Y i = y n + h Z a i j f ( Y j ) +  Z b )Jl+Oij ~ -  g(Yj), i - - 1 , . . . , s ,  

j=t j=l (54) 

j = l  j = l  

For convenience it will be assumed that 

c = Ae, b = B0)e,  d = B(2)e, )~ = b J1 + d Jl° . 
h 

In passing it should be noted that in constructing an SRK method based on only the first and second 
order Stratonovich multiple integrals only Jl and Jlo/h need to be considered, since the other multiple 
integrals of order 2 or less can be expressed in terms of these integrals and h by the formula 

J10 h 2 j2  J01 _ J1 - - -  
J00 = -~-, Jll ---- -~--, h h 

(see [10], for example). 
In order to construct a method with strong order 2, tree conditions l, 2, 4, 5, 6, 20 and 22 must 

be considered, since E(e(t) 2) for all of these trees is O(hP), p ~< 3. Each of these terms will now be 
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Table 3 
Expectation values 

Expectation value 

J,~ h 
JZ,/h2 ±h 

3 

J, Jm/h ½ h 

j4 3h 2 

J~J,o/h 3h2 

J~(J,(,/h) 2 ~tz 2 
6 

Jl(J,o/h) 3 ½h z 

(J,,/h) 4 _~h ~ 
J~ 15h 3 

J~Jlo/h ~h  3 

j4(alo/h)2 4h 3 

j~(jio/h)3 2,53 
4,~ 
4 ]/3 J~(J,o/h) 4 g 

J,(Jw/h) 5 ~h 3 

(Jm/h) ~ ~h 3 

considered in turn but first a table of various expected values will be given (Table 3) which will prove 
helpful in this analysis. 

1. E[(Jo-hc~Te)  2] = ( 1 - a T e ) h  2 ~ a V e =  1. 

2. E[(Jl  - z We) 2] = E[(J ,  (1 - 7 (1)we) - ( J lo /h ) ' y  (2)Te) 2] 

= (gl,  g2) - E ( J I  J l o / h )  E ( J l o / h )  2 g2 

! 

91 = 9 2  = 0 
~(1)Te = 1, ~(2)Ye = 0. 

l ~  91 h2 > /0  
g2 

4. E [ ( J l o -  h(a%J, +aVdJto/h)) 2] = E[(Jlo(1  - ~ V d ) -  barb J1) 2] 
c~Td= 1, c~Tb=0 (case 2). 

5. E [ ( J o l  - h(41)TcJ1 + 4 21TcJlo/h)) 2] = h 2 E [ ( J l  (1 - .y / l /Tc)  -- (Jlo/h)(1 + 4 21~))2] 
"/(l)Tc = 1, ~'(2)1:c = --1 (case 2). 
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. E[(J l l  _ zTQk)2 ] ---- E [ ( j 2 / 2  _ z TA)2] 

----E 2 1  [(Ji  ( :  -- ')  '(1)Tb) -- Jl (J lo /h)( 'Y  (1)Td + ") '(2)Tb) (Jlo/h)2~/(2)Td) 2] 

= 9TXg,  

where X is the 3 × 3 matrix with elements 
Xij = E[j6-( i+J)(J lo /h) i+j-2] .  

So condition 6 

/3 )() 3 5 = hZ(gl,gz,g3) ~ ~ 1 92 

5 1 1 
-~ ~ ~ 93 

/>o 

)..),(1)T b = 1, ~/(1)T d q_ ,7(2)Tb = 0, ')'(2)Td = 0. 

22. E [ ( J l l  I - -  l Z T / ~ 2 ) 2 ]  = E [ ( J 3 / 6 -  lzT)~2)2] = gTXgh3, 
where 

gT ---- ( l  __ ,~(1)Tb2 ' 1 (..,/(2)Tb2 + 27(1)Tbd), _1  (.~(1)Td 2 + 2,./(2)Tbd),- ½7(2)Td2), 

x~j = z[J8-(~+J)(J,0/h )~+~-:]. 
Thus condition 22 becomes /15 1 4 i /2  

gT ~ 4 24 
9 4 

4 Z 

9 4 5 

and this implies 
1 70)Tb2 = .~, "/(2)Td2 = 0. 

9 / > 0  

")'(2)Tb2 q- 2")'(1)Tbd = 0, "y(1)Td2 + 2")'(2)Tbd = 0, 

22. E [ ( J I 1 , -  zzT)~) 2] = 9 T x 9  h3 >10, 

where X is as above and 9 = 0 implies 

.y(')~ B(')b= ~, .y(2)T B(1)b + 41), (B(2)b + B(1)d) = 0, 

3,(2)TB(2)d = 0, ../0)TB(2)d + ~/(2)T (B(2)b + B(1)d) = O. 

Thus a method of the form given in (54) will have strong order 2 if and only if 

aT[e, d, b] = [1, 1, 0], 

4')~[~,  d, b, ~] = [ 1 , - 4 : ) ~ b ,  ~, ~], 
"y(Z)T[e, d, c] = [0, 0 , - 1 ] ,  

.7(1)T[b2, B(1)b, d 2, B(Z)d] = [1, 61, _2.y(Z)Tbd, _7(2)T(B(e)b+ B(l)d)] ,  

3,(2)T[b 2, B(l)b, d 2, B(2)d] = [ -27(1 )Tbd , - -y (1 )T(B(2)b+  BO)d) ,  O, 0]. 

( 5 5 )  
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It is now necessary to construct a family of methods satisfying (55). Some simple analysis shows 
that this is not possible with s = 3, since in this case, with dl: d2 and d3 distinct, 

,.),(2)T = 0. 

However, it is possible to satisfy (55) if s = 4 with a large number of free parameters. In principle it is 
possible to choose these free parameters in such a way so as many as possible of the h 5 principal error 
terms are minimized. However, since this paper is partially written to honour the pioneering work of 
Runge and Kutta, most of these free parameters will be chosen so that the deterministic component 
of (54) is the classical Runge-Kutta method of Kutta [12] given by 

0 

1 

1 

1 0 

1 

0 

1 

0 l 

0 1 

1 1 1 

Since the general 4-stage method (54) has 30 free parameters and there are 18 equations to be 
solved, the above choice for the deterministic component still leaves 3 free parameters. The remaining 
17 conditions (one is already satisfied by aTe = 1) were solved using MAPLE and in order to 
simplify the solution a choice of b4 = 1 was made. This leads to a number of possible methods and 
the following method was selected: 

A =  

B(1) = 

t3 (2)  = 

0 

½ o 

o ½ o 

0 0 1 0 

0 

-0.7242916356 

0.4237353406 

- 1.578475506 

0 

2.702000410 

1.757261649 

-2.918524118 

aT 1 ,  
3'  3: 

-0.1994437050 

0.840100343 

°°i/ 0 0 

0 0 

0 0 

1.738375163 0 /  ' 

7(1)T = ( -  0.7800788474, 0.07363768240, 1.486520013, 0.2199211524), 

,y(Z)T= (1.693950844, 1.636107882, --3.024009558, --0.3060491602). 

(56) 
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5. Numerical results and conclusions 

In this section, numerical results from the implementation of three methods are presented. The 
methods are the Platen method (52), the new two-stage method of strong order 1.5 (51) and the four- 
stage method of strong order 2 (56). These methods will be denoted by M1, M2 and M3, respectively. 
They will be implemented with constant step size on two problems taken from Kloeden and Platen 
[10] for which the exact solution in terms of a Wiener process is known. 

When implementing these methods, the same sequence of random numbers for the Wiener incre- 
ment J1 is used for the step size under consideration. The random variable JJ0 = f f odWds  is 
approximated by the formula 

J~l,O) = 1 A (  V ~ I  + a,,o) 

(see [10]) with truncation index p = 5, where 

- 2 v ~ l  
al,o - ~ r f , , r  - 2x/-~v~p#. 

r '=l 

Here ffl,r and # are Gaussian random variables, and 

1 1 ~ -~1  
PP-- 12 2~r 2 ~-" 

r = l  

For both problems and all methods, 25 trajectories are computed for each step size. While in practice 
this sample size would be considered unrealistically small, for the purposes of this implementation 25 
trajectories are sufficient to show the relative performances of the methods in question. The imple- 
mentation determines the average error for each step size at the end of the interval of integration for 
each method, and the results appear in Tables 4, 5 and 6. The errors are presented in the form a.b(-p) 
where p is the exponent. 

Test Problem 1 (See [10, Eq. 4.4.31]). 

d y =  - aey (1  - ye) dt + a ( 1  - y2) dW, y(O) =Yo, t E [0, 1], 

with solution 

y(t) = tanh(aW(t) + arctanh(y0)). 

In Stratonovich form, the SDE becomes 

dy = a(1 - y2) odW. 

In the results below, the parameter a was set to 1.O, and the initial value was Y0 -- 0.0. 

Test Problem 2 (See [10, Eq. 4.4.46]). 

dy : - ( ~  + ~2y) (1 - y2) dt + ~(1 - y~) dW, v(o) = vo, t e [o, 1], 
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Table 4 
Global errors for Problem 1 

1 I I 1 1 

M1 1.7(-2) 1.3(-2) 6.7(-3) 3.3(-3) 1.9(-3) 6.9(-4) 

M2 9.7(-3) 6.2(-3) 3.4(-3) 2.0(-3) 1.0(-3) 2.8(-4) 

M3 6.5(-3) 4.5(-3) 1.6(-3) 3.0(-4) 1.5(-4) 7.0(-5) 

Table 5 
Global errors for Problem 2,/3 = 2.0 

1 1 1 1 I 1 
h ~ .~ 10(-5 2(~-3 4(x-5 ~(x--5 

M1 2.5(-1) 1.4(-1) 5.0(-2) 3.1(-2) 1.3(-2) 7.8(-3) 

M2 2.1(-1) 1.1(-1) 4.1(-2) 1.9(-2) 1.0(-2) 6.5(-3) 

M3 3.0(-1) 1.1(-1) 3.1(-2) 1.1(-2) 3.4(-3) 1.9(-3) 

Table 6 
Global errors for Problem 2,/3 = 0.01 

1 1 1 1 1 1 

M1 7.4(-3) 3.7(-3) 1.8(-3) 9.1(-4) 4.6(-4) 2.3(-4) 

M2 1.1(-4) 2.7(-5) 7.0(-6) 1.8(-6) 4.6(-7) 1.3(-7) 

M3 1.9(-6) 7.6(-7) 2.8(-7) 1.5(-7) 8.2(-8) 3.9(-8) 

99 

with solution 

y(t )  - (1 + Yo) exp(-2c~t  + 2/3W(t)) + Y0 - 1 

(1 + Y0) exp(-Zo~t + 2/3W(t)) + 1 - Y0" 

In Stratonovich form, the SDE has the form 

dy = - ~ ( 1  - y2) dt + /3 (1  - y2) odW. 

This problem was solved numerically twice, first with parameters a ~- 1.0, /3 -- 2.0 and secondly 
with choices a -- 1.0, /3 = 0.01. This demonstrates the variation in emphasis of the stochastic and 
deterministic parts of the SDE. The initial value was Y0 = 0.0. 

While further tests are needed to obtain definite conclusions, some trends from these tables can be 
deduced. 

• For problems in which the deterministic term dominates (Problem 2 with /3 = 0.01) M3 is by 
far the best with M2 performing significantly better than Platen's method. This is because the 
deterministic component  of  M3 is the fourth order classical  RK method,  whi le  the deterministic 

component of M2 has order 2. 
• For problems with a moderately large stochastic component the global error of M2 ranges between 

1.5 times and 7 times as large as that for M3, while the global error of M1 is at worst approximately 
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twice as large as that for M2. In all cases, the improvement becomes more noticeable as the step 
size is reduced. 

The aim of this paper has been to show that more effective stochastic Runge-Kutta methods could be 
constructed than was previously the case. A strong order 2 SRK method with the fourth order classical 
RK method as the deterministic component was constructed, and this seems to perform substantially 
better than Platen's method. However, as can be seen from the numerical tests a variable step size 
implementation is needed. It is planned to embed the method M2 in a 4-stage method with strong order 
2 (not M3) and then perform local extrapolation. It is also planned to run the number of simulations 
adaptively. This will be the subject of further papers. But in the meantime it is encouraging to note 
that the pioneering work of Runge and Kutta 100 years ago still has relevance in the relatively new 
area of stochastic differential equations. 
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